
44

Advances in Science and Technology
Research Journal
Volume 8, No. 24, Dec. 2014, pages 44–50
DOI: 10.12913/22998624/566

Original Article

Received: 2014.10.18
Accepted: 2014.11.12
Published: 2014.12.01

APPLICATION OF THE MAXIMA IN THE TEACHING OF SCIENCE SUBJECTS
AT DIFFERENT LEVELS OF KNOWLEDGE

Anna Makarewicz1

1 Department of Applied Mathematics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin,
Poland, e-mail: a.makarewicz@pollub.pl

ABSTRACT
In this paper I present a program Maxima, which is one of the best computer algebra
system (CAS). The program is easy to use and offers many possibilities. In the text the
interface, basic commands, and various examples to facilitate complex calculations in
almost every field of mathematics are preented. I prove that the program can be used
in secondary schools, upper secondary schools and college. Program’s capabilities are
presented, including, among others, differentiation and symbolic integration, symbol-
ic solving equations (including differential), simplifying algebraic expressions, matrix
operations, the possibility of drawing graphs of 2D / 3D and others.

Keywords: computer program, numerical computation, symbolic computation, sym-
bolic differentiation, symbolic integration, graph, graph three-dimensional, function.

INTRODUCTION

Maxima is a computer program, performing
mathematical calculations, both symbolic and nu-
meric. The use of symbolic computation allows to
solve many mathematical problems in an accurate
manner. Maxima can work as a calculator, which
can be used in secondary schools. It is able to
create very complex parametric function graphs,
implicit function graphs and graphs of function
of several variables, (with such problems faced
students of almost all departments), these are nec-
essary basics that form the base for further de-
velopment and specialization in a specific area,
for example mechanics, electrical engineering,
computer science, construction, aviation, broadly
understood technologies, etc.

This program stems from program macsyma
developed at the Massachusetts Institute of Tech-
nology for the Department of Energy. The soft-
ware features include:
 • performing numerical calculations with any

accuracy,
 • simplifying algebraic expressions and trigono-

metric,

 • symbolic solving equations (including differ-
ential),

 • symbolic solving systems of equations,
 • symbolic differentiation and integration,
 • matrix operations,
 • drawing graphs of functions,
 • perform calculations in the field of probability

theory,
 • define your own functions by the user,
 • export of the results to the following formats:

HTML, LaTeX, and graphic formats PNG,
PostScript.
Thanks to William Schelter program is free.

Since then, the Maxima has been developing quite
intensively in versions for Windows and Linux.
Since version 5.101 program already contains
an integrated overlay wxMaxima (graphi-
cal user interface), which provides bet-
ter formatting mathematical formulas and
makes them easier to enter and modify.
Maxima is a simple and intuitive software. Learn-
ing the basics of the Maxima does not require a
large amount of time. Maxima facilitates better
and faster understanding of mathematics. It al-
lows you to experiment, consider a lot of alter-

45

Advances in Science and Technology Research Journal vol. 8 (23) 2014

native solutions and create visualization. It also
helps to save time and to control and eliminate
errors in solving complex accounting tasks.

BASICS MAXIMA

Maxima works at input %i and outputs %o.
Inputs and outputs are numbered that in combina-
tion with the %i or %o creates a unique identifier.
Maxima distinguishes quantity of letter, so the
function f(x) and F(x) are not the same. Variable
%i stores the result of the last command.

Each instruction must be completed: a semi-
colon (;) – displays the „result” or dollar ($) – do
not display the result (but it is calculated). The
program accepts standard arithmetic operators
that are intuitive, so that the program can be used
as a better class of the calculator in secondary
schools:
 • adding +
 • subtraction –
 • multiplication *
 • dividing /
 • exponentiation ^ or **
 • matrix multiplication .

Comparison operators are also intuitive:
 • equality =
 • inequality <>
 • greater than >

 • less than <
 • greater than or equal to >=
 • less than or equal to <=
 • to assign a value :
 • defining a function :=

Constants:
 • %e – base of natural logarithm
 • %i – the imaginary unit
 • %pi – π
 • inf – ∞
 • minf – −∞
 • %gamma – Euler’s constant

Example:
Let’s try to perform the first arithmetic opera-

tions (ie, Maxima will be used as a calculator) and
show the interface (Figure 1).

Note that you can refer to the previous result
with % (percent), eg:
(%i4) % – 20; (33–20)
(%o4) 13;

You can also refer to any previous result,
which we received in a given session, which
greatly facilitates the work and calculations. For
this purpose we use the term %o or %i. Let us see
how this works in practice:
(%i5) %o2 * 3; (-10*3)
(%o5) -30
(%i6) %o3 – %o4; (33–13)
(%o6) 20

Fig. 1. First arithmetic operations

Advances in Science and Technology Research Journal vol. 8 (23) 2014

46

To receive a number in decimal form, use the
function float, here is an example:
(%i1) float(2/7);
(%o1) 0.28571428571429

Numerical calculations in Maxima can be
performed with any precision, the command
fpprec: n will be performed with an accuracy
of n-significant digits (standard setting fpprec:
16). We can also change the accuracy of the dis-
played results by typing fpprintprec: n, here is
an example:
(%i1) float(23/112);
(%o1) 0.20535714285714
(%i2) fpprintprec:4$
(%i3) float(23/1121);
(%o3) 0.021

Maxima handles well with large numbers and
is better than the calculator. Let us try to calculate
the 2128 and 30! Factorial operation is very dif-
ficult to imagine, especially for high school stu-
dents and ordinary calculators cannot handle such
large numbers, Maxima by calculating “the facto-
rial of any value” helps you to realize how much
the number is changing under its influence, which
greatly helps to develop student’s imagination. To
do this in Maxima, we write:
(%i1) 2 ^ 128;
(%o1) 340282366920938463463374607431768
211456
(%i2) 30!;
(%o2) 265252859812191058636308480000000

Operator ‘ (apostrophe)

Operator ‘ prohibits the calculation of the val-
ue of its argument.
Example:
 (%i1) diff(sin(x),x)
(%o1) cos(x)
(%i2) ’diff(sin(x),x);
(%o2) (sin(x))

Symbolic calculations are very good and
useful, as during subsequent operations the
computer does not make the mistake associ-
ated with an approximation of the number.
Nested mathematical operations are often so
complicated that it is impossible to estimate
it’s value. Then you can ask the program to
give the approximate result of the calculation.
To get the value of the expression we place the
comma after it and call the command number. It
requires the return of the approximate value of the

expression which is located before the comma. So
far, Maxima was used as a better class of calcula-
tor. Now we will present what is beyond the reach
of a calculator.

EXPRESSIONS

The program Maxima is possible to declare
algebraic expressions. You can save even the
most complex expression-patterns. These ex-
pressions can be freely converted, and you can
find their values at certain, fixed parameter val-
ues . Maxima has many features that allow modi-
fying, simplifying and developing expressions
and these are the main problems of students
from secondary schools. Thanks to Maxima,
they may check their thinking because Maxi-
ma allows you to control the partial results and
calculations and all the results are displayed in
symbolic form which enables precise analysis of
reasoning. Let us present selected functions on
algebraic expressions:
 • ev(expression,condition) – modifies the ex-

pression based on a condition,
 • subst(b,a,expression) – after the command

variable a in the expression will be replaced by
variable b,

 • expand(expression) – develops algebraic ex-
pressions,

 • ratsimp(expression) – simplifies algebraic ex-
pressions,

 • radcan(expression) – simplifies expression,
 • factor(expression) – decomposes expression

factors,
 • trigexpand(expression) – develops trigono-

metric expression,
 • trigreduce(expression), trigsimp(expression) –

simplifies trigonometric expression
 • rectform – shows the expression in the form

A + B i.
 • polarform – shows the complex expression in

the polar form re iθ

 • logcontact – simplifies the expression such as
log x + b log y.

Example:
(%i1) expand((b+c)^5); // expands the expression
in brackets
(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter
the command:
(%i2) factor(%);
(%o2) (c+b)5

47

Advances in Science and Technology Research Journal vol. 8 (23) 2014

DIFFERENTIATION AND INTEGRATION

The most important command to derive is diff
(f (x), x); it requires the variable as the second ar-
gument at which the function f(x) is differentiated
and can be used to calculate the partial deriva-
tives. Diff command can have a third argument,
defining the degree of derivative. These are se-
lected features of the Maxima for the differential
and integral calculus:
f(n)(x) – diff(f(x),x,n)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – integrate(f(x),x)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – integrate(f(x),x,a,b) or romberg(f(x),
 x,a,b) (calculate the integral numerically)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – diff(f(x,y),x)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – diff(f(x,y),y)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – diff(f(x,y),x,2)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n)

 – diff(f(x,y),y,2)

• subst(b,a,expression) – after the command variable a in the expression will be replaced by
variable b,

• expand(expression) – develops algebraic expressions,

• ratsimp(expression) – simplifies algebraic expressions,

• radcan(expression) – simplifies expression,

• factor(expression) – decomposes expression factors,

• trigexpand(expression) – develops trigonometric expression,

• trigreduce(expression), trigsimp(expression) – simplifies trigonometric expression

• rectform – shows the expression in the form A + B i.

• polarform – shows the complex expression in the polar form re iθ

• logcontact – simplifies the expression such as log x + b log y.

Example:

(%i1) expand((b+c)^5); // expands the expression in brackets

(%o1) c5+5*b*c4+10*b2*c3+10*b3*c2+5*b4*c+b5

Now we will factorize the expression by enter the command:

(%i2) factor(%);

(%o2) (c+b)5

4. Differentiation and integration

The most important command to derive is diff (f (x), x); it requires as the second argument the
variable at which the function f(x) is differentiated and can be used to calculate the partial derivatives.
Diff command can have a third argument, defining the degree of derivative. This are selected features
of the Maxima for the differential and integral calculus:

f(n)(x) - diff(f(x),x,n)

∫ f(𝑥𝑥)𝑑𝑑𝑥𝑥
 - integrate(f(x),x)

∫ f (𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 − integrate(f(x),x,a,b) or romberg(f(x),x,a,b) (calculate the integral numerically)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),x)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 - diff(f(x,y),y)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),x,2)

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 - diff(f(x,y),y,2)

𝜕𝜕𝑘𝑘+𝑛𝑛𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘𝜕𝜕𝜕𝜕𝑛𝑛 - diff(f(x,y),x,k,y,n) – diff(f(x,y),x,k,y,n)

Examples:
1. Let f(x) = xx be the function whose derivative

we try to calculate, then we obtain:
 (%i1) diff(x^x,x);
 (%o1) xx*(log(x)+1)
2. Let the function be given by f(x) =

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

.
Calculation derivative of the second degree in
Maxima looks as follows:

 (%i1) diff(sin(x)/x,x,2);
 (%o1) –

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

3. The function be given by f(x, y) =

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

.
Let calculate its partial derivative:

 (%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);
 (%o1)

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

To calculate the integrals both definite and in-
definite we use integrate() command.

Example 1. We calculate

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);
(%o1)

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

Each student can easily check the result by
differentiating it and writing the following com-
mands:
(%i2) diff(%,x);
(%o2)

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

(%i3) ratsimp(%); // by this command we get a
simplified result

(%o3) –

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

Example 2. Let calculate the definite integral

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

 by writing command integrate(expres-
sion, variable, lower limit, upper limit):
(%i1) integrate(exp(-x*x),x,0,inf);
(%o1)

Examples.

1. Let f(x) = xx be the function which derivative we try to calculate, then we obtain:

(%i1) diff(x^x,x);

(%o1) xx*(log(x)+1)

2. Let the function be given by f(x) = sin (𝑥𝑥)
𝑥𝑥 . Calculation derivative of the second degree in Maxima

looks as follows:

(%i1) diff(sin(x)/x,x,2);

(%o1) − sin (𝑥𝑥)
𝑥𝑥 + 2sin (𝑥𝑥)

𝑥𝑥3 − 2cos (𝑥𝑥)
𝑥𝑥2

3. The function be given by f(x, y) = 𝑥𝑥 ∗ 𝑦𝑦 + 𝑥𝑥2

𝑦𝑦3. Let calculate its partial derivative: 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(%i1) diff((x*y)+(x^2)/(y^3),x, 1, y, 1);

(%o1) 1 − 6𝑥𝑥
𝑦𝑦4

To calculate the integrals both definite and indefinite we use integrate() command.

Example 1. We calculate ∫ 7−2𝑥𝑥
𝑥𝑥2+4𝑥𝑥+13 𝑑𝑑𝑥𝑥

(%i1) integrate((7-2*x)/(x^2+4*x+13),x);

(%o1) 11
3 atan (2𝑥𝑥+4

6) − log (𝑥𝑥2 + 4𝑥𝑥 + 13)

Each student can easily check the result by differentiating it and writing the following commands:

(%i2) diff(%,x);

(%o2) 11
9∗((2𝑥𝑥+4)2

36 +1)
− 2𝑥𝑥+4

𝑥𝑥2+4𝑥𝑥+13

 (%i3) ratsimp(%); // by this command we get a simplified result

(%o3) − 2𝑥𝑥−7
𝑥𝑥2+4𝑥𝑥+13

Example 2. Let calculate the definite integral ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑥𝑥∞
0 by writng command integrate(expression,

variable, lower limit, upper limit):

(%i1) integrate(exp(-x*x),x,0,inf);

(%o1) √𝜋𝜋
2

Expressions can be calculated numerically by using the float(expression) command, continuing the
previous example, we get:

(%i2) float(%);

(%o2) 0.88622692545276

Expressions can be calculated numerically by
using the float(expression) command, continuing
the previous example, we get:
(%i2) float(%);
(%o2) 0.88622692545276

The function that performs the integration in
a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals
(not only with the constant limits), which will
surely be useful for students during calculating
fields, the volumes of solids and their surfaces. In
addition, anyone can do two or three-dimensional
graphs, (we will explain it in chapter 9), this in
combination with symbolic calculations made in
Maxim actively growing and developing spatial
imagination. We calculate:

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

(%i1) g(x,y):=x/(y^2);
(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);
(%o2) 0.12500002874223

SYSTEMS OF EQUATIONS

Some useful functions for solving equations
and systems of equations:
 • solve (equation, variable) – solves the equa-

tion in the set of complex numbers,
 • linsolve ([equations], [variables]) – solves a

linear system of equations,
 • algsys ([equations], [variables]) – solves alge-

braic system equations in the set of complex
numbers, if you want to receive solution in the
real numbers , first you should write the fol-
lowing command: realonly: true,

 • find_root (f (x), x, a, b) – this command find
(through the approximation) zeros of the func-
tion f in the interval [a, b] (notice that f (a), f
(b) should have different signs).

For example, to find a solution to the system
of equations

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

 we write:
(%i1) r1:

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

;
(%o1)

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

(%i2) r2:

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

;
(%o2)

The function that performs the integration in a numerical way is romberg. The Romberg () and
integrate () handles well with multiple integrals (not only with the constant limits), which will surely
be useful for students during calculating fields, the volumes of solids and their surfaces. In addition,
anyone can do two or three-dimensional graphs, (we will explain it in chapter 9), this in combination
with symbolic calculations made in Maxim actively growing and developing spatial imagination. We
calculate: ∫ ∫ 𝑥𝑥

𝑦𝑦2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑6
4

2
1

(%i1) g(x,y):=x/(y^2);

(%i2) romberg(romberg(g(x,y),y,4,6),x,1,2);

(%o2) 0.12500002874223

5. Systems of equations

Some useful functions for solving equations and systems of equations:

• solve (equation, variable) - solves the equation in the set of complex numbers,
• linsolve ([equations], [variables]) - solves a linear system of equations,
• algsys ([equations], [variables]) - solves algebraic system equations in the set of complex numbers, if
you want to receive solution in the real numbers , first you should write the following command:
realonly: true,
• find_root (f (x), x, a, b) – this command find (through the approximation) zeros of the function f in
the interval [a, b] (notice that f (a), f (b) should have different signs).

For example, to find a solution to the system of equations : {9𝑑𝑑 − 8𝑑𝑑 = 4
7𝑑𝑑 + 2𝑑𝑑 = 3 we write:

(%i1) r1: 9 ∗ 𝑑𝑑 − 8 ∗ 𝑑𝑑 = 4;

(%o1) 9𝑑𝑑 − 8𝑑𝑑 = 4

(%i2) r2: 7 ∗ 𝑑𝑑 + 2 ∗ 𝑑𝑑 = 3;

(%o2) 7𝑑𝑑 + 2𝑑𝑑 = 3

 (%i3) s:solve([r1,r2],[x,y]);

(%o3) [[x=16/37,y=-1/74]]

Checking the solution.
The following command substitute the result into to both equations. The subst() command put the
expression in the first argument into the expression the second argument

 (%i4) [subst(s,r1),subst(s,r2)];

(%o4) [4=4,3=3]

Solutions do not have to be a real. For equation x4-1 = 0, we obtain:

(%i1) solve(x^4-1);

(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accuracy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be rational numbers. The second parameter defines the
accuracy with which the root is searched- default is 10-7. In addition, each student can calculate roots

Advances in Science and Technology Research Journal vol. 8 (23) 2014

48

(%i3) s:solve([r1,r2], [x,y]);
(%o3) [[x=16/37, y=-1/74]]

Checking the solution

The following command substitute the result
into to both equations. The subst() command put
the expression in the first argument into the ex-
pression the second argument
 (%i4) [subst(s,r1),subst(s,r2)];
(%o4) [4=4,3=3]

Solutions do not have to be a real. For equa-
tion x4-1 = 0, we obtain:
(%i1) solve(x^4-1);
(%o1) [x=%i,x=-1,x=-%i,x=1]

Functions realroots (W), realroots (W, accu-
racy) find by bisection method all real roots of a
polynomial. Polynomial coefficients must be ra-
tional numbers. The second parameter defines the
accuracy with which the root is searched- default
is 10-7. In addition, each student can calculate
roots e.g. quadratic equation (with parameters a,
b, c: ax2 + bx + c = 0), and thus verify that the
formulas learned in school are rely true, and they
are zeros above quadratic function. Additionally,
you can also check the correctness of Viete’s for-
mulas, which improve memorization and provide
impetus for deepening self-knowledge.

DIFFERENTIAL EQUATIONS

The function that solves ordinary differential
equations of the first and second order is ode2
(eqn, zvar, nvar), where zvar is the dependent
variable and nvar is the independent variable.
To solve the differential equation we will use the
operator: ‘diff – which introduces a symbol of the
derivative and does not perform differentiation,
but prepare derivative which later is part of the
differential equation.

For example, we solve the differential equa-
tion

eg. quadratic equation (with parameters a, b, c: ax2 + bx + c = 0), and thus verify that the formulas
learned in school are rely true, and they are zeros above quadratic function. Additionally, you can also
check the correctness of Viete'a formulas, which improves memorization and provides impetus for
deepening self-knowledge.

6. Differential Equations

The function that solves ordinary differential equations of the first and second order is ode2 (eqn,
zvar, nvar), where zvar is the dependent variable and nvar is the independent variable.
To solve the differential equation we will use the operator: 'diff – which introduces a symbol of the
derivative and does not perform differentiation, but prepare derivative which later is part of the
differential equation.

For example, we solve the differential equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

(%i1) rr:'diff(y,t,1)=3*(t*y)^2-y^2*sin(t);

(%o1) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

 (%i2) ro:ode2(rr,y,t); // solution of the differential equation

(%o2) 1/y=-cos(t)-t3+%c //notice that %c is constant value

(%i3) rs:ic1(ro,t=0,y=1); // initial condition y(0)=1

(%o3) 1/y=-cos(t)-t3+2

(%i4) method; // We can ask about the type of the equation and we get:

(%o4) separable // variable-separated

If Maxima can not solve a differential equation, as a result returns false.

8. Matrices

The Maxima has many functions related to matrices. Matrices are introduced to the program by using
the function matrix, to perform the matrix product we use a dot (not *). The use of other features we
show on an example:

If we use the function genmatrix of undefined parameter, we obtain a general matrix with elements aij.

(%i1) genmatrix(a,2,2);

(%o1) [
𝑎𝑎1,1 𝑎𝑎1,2
𝑎𝑎2,1 𝑎𝑎2,2

]

We calculate the determinant by writing the following command:

(%i2) determinant(%);

(%o2) a1,1a2,2-a1,2a2,1

We can also (symbolically) designate the inverse matrix:

(%i3) invert(%o1) ; // Simplified result which we obtain by using the following function:

(%i4) ratsimp(%); //then we have:

(%i1) rr:’diff(y,t,1)=3*(t*y)^2-y^2*sin(t);
(%o1)

eg. quadratic equation (with parameters a, b, c: ax2 + bx + c = 0), and thus verify that the formulas
learned in school are rely true, and they are zeros above quadratic function. Additionally, you can also
check the correctness of Viete'a formulas, which improves memorization and provides impetus for
deepening self-knowledge.

6. Differential Equations

The function that solves ordinary differential equations of the first and second order is ode2 (eqn,
zvar, nvar), where zvar is the dependent variable and nvar is the independent variable.
To solve the differential equation we will use the operator: 'diff – which introduces a symbol of the
derivative and does not perform differentiation, but prepare derivative which later is part of the
differential equation.

For example, we solve the differential equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

(%i1) rr:'diff(y,t,1)=3*(t*y)^2-y^2*sin(t);

(%o1) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

 (%i2) ro:ode2(rr,y,t); // solution of the differential equation

(%o2) 1/y=-cos(t)-t3+%c //notice that %c is constant value

(%i3) rs:ic1(ro,t=0,y=1); // initial condition y(0)=1

(%o3) 1/y=-cos(t)-t3+2

(%i4) method; // We can ask about the type of the equation and we get:

(%o4) separable // variable-separated

If Maxima can not solve a differential equation, as a result returns false.

8. Matrices

The Maxima has many functions related to matrices. Matrices are introduced to the program by using
the function matrix, to perform the matrix product we use a dot (not *). The use of other features we
show on an example:

If we use the function genmatrix of undefined parameter, we obtain a general matrix with elements aij.

(%i1) genmatrix(a,2,2);

(%o1) [
𝑎𝑎1,1 𝑎𝑎1,2
𝑎𝑎2,1 𝑎𝑎2,2

]

We calculate the determinant by writing the following command:

(%i2) determinant(%);

(%o2) a1,1a2,2-a1,2a2,1

We can also (symbolically) designate the inverse matrix:

(%i3) invert(%o1) ; // Simplified result which we obtain by using the following function:

(%i4) ratsimp(%); //then we have:

(%i2) ro:ode2(rr,y,t); // solution of the differential
equation
(%o2) 1/y=-cos(t)-t3+%c //notice that %c is con-
stant value
(%i3) rs:ic1(ro,t=0,y=1); // initial condition y(0)=1
(%o3) 1/y=-cos(t)-t3+2
(%i4) method; // We can ask about the type of the

equation and we get:
(%o4) separable // variable-separated

If Maxima cannot solve a differential equa-
tion, as a result returns false.

MATRICES

The Maxima has many functions related to
matrices. Matrices are introduced to the program
by using the function matrix, to perform the ma-
trix product we use a dot (not *). The use of other
features we show on an example:

If we use the function genmatrix of undefined
parameter, we obtain a general matrix with ele-
ments aij.
(%i1) genmatrix(a,2,2);
(%o1)

eg. quadratic equation (with parameters a, b, c: ax2 + bx + c = 0), and thus verify that the formulas
learned in school are rely true, and they are zeros above quadratic function. Additionally, you can also
check the correctness of Viete'a formulas, which improves memorization and provides impetus for
deepening self-knowledge.

6. Differential Equations

The function that solves ordinary differential equations of the first and second order is ode2 (eqn,
zvar, nvar), where zvar is the dependent variable and nvar is the independent variable.
To solve the differential equation we will use the operator: 'diff – which introduces a symbol of the
derivative and does not perform differentiation, but prepare derivative which later is part of the
differential equation.

For example, we solve the differential equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

(%i1) rr:'diff(y,t,1)=3*(t*y)^2-y^2*sin(t);

(%o1) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 3𝑡𝑡2𝑦𝑦2 − sin (𝑡𝑡)𝑦𝑦2

 (%i2) ro:ode2(rr,y,t); // solution of the differential equation

(%o2) 1/y=-cos(t)-t3+%c //notice that %c is constant value

(%i3) rs:ic1(ro,t=0,y=1); // initial condition y(0)=1

(%o3) 1/y=-cos(t)-t3+2

(%i4) method; // We can ask about the type of the equation and we get:

(%o4) separable // variable-separated

If Maxima can not solve a differential equation, as a result returns false.

8. Matrices

The Maxima has many functions related to matrices. Matrices are introduced to the program by using
the function matrix, to perform the matrix product we use a dot (not *). The use of other features we
show on an example:

If we use the function genmatrix of undefined parameter, we obtain a general matrix with elements aij.

(%i1) genmatrix(a,2,2);

(%o1) [
𝑎𝑎1,1 𝑎𝑎1,2
𝑎𝑎2,1 𝑎𝑎2,2

]

We calculate the determinant by writing the following command:

(%i2) determinant(%);

(%o2) a1,1a2,2-a1,2a2,1

We can also (symbolically) designate the inverse matrix:

(%i3) invert(%o1) ; // Simplified result which we obtain by using the following function:

(%i4) ratsimp(%); //then we have:

We calculate the determinant by writing the
following command:
(%i2) determinant(%);
(%o2) a1,1a2,2-a1,2a2,1

We can also (symbolically) designate the in-
verse matrix:
(%i3) invert(%o1) ; // Simplified result which we
obtain by using the following function:
(%i4) ratsimp(%); //then we have:

(%o4) (%o4) [
𝑎𝑎2,2

a1,1a2,2−a1,2a2,1
−𝑎𝑎1,2

a1,1a2,2−a1,2a2,1
−𝑎𝑎2,1

a1,1a2,2−a1,2a2,1
𝑎𝑎1,1

a1,1a2,2−a1,2a2,1
]

These symbolic calculations also make remembering easier and preserve the fundamental rights that
are used by the students in all science, they also inspire to continue learning mathematics.

Although the Maxima is a symbolic algebra system also allow us for numerical operations, also with
elements of linear algebra. We can calculate for example:

• the eigenvalues of the matrix A and their multiplicities - eigenvalues(A),

• rank of a matrix A - rank(A),

• eigenvalues of a square matrix A, with their multiples and their eigenvectors -
eigenvectors(A),

• transposition of matrix A - transpose(A)

9. Graphs

At the beginning of drawing graphs we will present and talk over some examples of functions and

their parameters. Let f1(x):= (x
2−1)

(x2+1)

(%i1) f1(x):=(x^2-1)/(x^2+1)$

(%i2) plot2d(f1(x),[x,-8,8]); \\ Drawing the function y:=f1(x) in the range -8 <= x <=8

We can also do three-dimensional graphs in Maxima, here's an example:

Let fc(x,y):=2-x2-y2

(%i1) fc(x,y):=2-x^2-y^2$

(%i1) plot3d(fc(x,y), [x,-8,8], [y,-8,8]);

These symbolic calculations also make re-
membering easier and preserve the fundamental
rights that are used by the students in all science,
they also inspire to continue learning mathematics.

Although the Maxima is a symbolic algebra
system also allow us for numerical operations,
also with elements of linear algebra. We can cal-
culate, for example:
 • the eigenvalues of the matrix A and their mul-

tiplicities – eigenvalues(A),
 • rank of a matrix A – rank(A),
 • eigenvalues of a square matrix A, with their mul-

tiples and their eigenvectors – eigenvectors(A),
 • transposition of matrix A – transpose(A)

GRAPHS

At the beginning of drawing graphs we will
present and talk over some examples of functions
and their parameters. Let f1(x):=

(%o4) [
𝑎𝑎2,2

a1,1a2,2−a1,2a2,1
−𝑎𝑎1,2

a1,1a2,2−a1,2a2,1
−𝑎𝑎2,1

a1,1a2,2−a1,2a2,1
𝑎𝑎1,1

a1,1a2,2−a1,2a2,1
]

These symbolic calculations also make remembering easier and preserve the fundamental rights that
are used by the students in all science, they also inspire to continue learning mathematics.

Although the Maxima is a symbolic algebra system also allow us for numerical operations, also with
elements of linear algebra. We can calculate for example:

• the eigenvalues of the matrix A and their multiplicities - eigenvalues(A),

• rank of a matrix A - rank(A),

• eigenvalues of a square matrix A, with their multiples and their eigenvectors -
eigenvectors(A),

• transposition of matrix A - transpose(A)

9. Graphs

At the beginning of drawing graphs we will present and talk over some examples of functions and

their parameters. Let f1(x):= (x
2−1)

(x2+1)

(%i1) f1(x):=(x^2-1)/(x^2+1)$

(%i2) plot2d(f1(x),[x,-8,8]); \\ Drawing the function y:=f1(x) in the range -8 <= x <=8

We can also do three-dimensional graphs in Maxima, here's an example:

Let fc(x,y):=2-x2-y2

(%i1) fc(x,y):=2-x^2-y^2$

(%i1) plot3d(fc(x,y), [x,-8,8], [y,-8,8]);

49

Advances in Science and Technology Research Journal vol. 8 (23) 2014

(%i1) f1(x):=(x^2-1)/(x^2+1)$
(%i2) plot2d(f1(x),[x,-8,8]); \\ Drawing the func-
tion y:=f1(x) in the range -8 <= x <=8 (Figure 2).

We can also do three-dimensional graphs in
Maxima, here’s an example (Figure 3):
Let fc(x,y):=2-x2-y2
(%i1) fc(x,y):=2-x^2-y^2$
(%i1) plot3d(fc(x,y), [x,-8,8], [y,-8,8]);

Thanks to 3D graph, students can see, some-
times even read (from graph) for example maxi-
mum and minimum value of functions in the range
and extremums of function. The situation is very
complicated, especially when function is a func-
tion of several variables, where, thanks to graph
and visualize students can realy see the use of pat-
terns and certain solving schemas in practice. 3D
and 2D graphs also help in determining the lim-
its of integration, not only single but also multiple

integral. This allows the student to realize what
are the limits of integration especially if they are
infinite and illustrate the use of multiple integrals
in practice. It is invaluable help for pupils and it
proves that mathematics cannot learn “by heart”.

To get the ability to rotate the graph (of course
after running Maxima and write commands), we
obtain:
(%i2) plot3d(fc(x,y), [x,-8,8], [y,-8,8], [plot_for-
mat, openmath]) (Figure 4).

Draw.mac package through the command im-
plicit () allows us to draw graphs of implicit func-
tions both 2D and 3D, such as (Figure 5):
(%i1)load(draw);
(%i2)draw2d(implicit(sin(2*x)*cos(y)=0.2,x,-
3,3,y,-3,3));

Using parametric() command allows us to
create graphs of parametric functions.

Fig. 2. Drawing the function

Fig. 3. Three-dimensional graphs

Advances in Science and Technology Research Journal vol. 8 (23) 2014

50

CONCLUSIONS

Very aesthetic visualization has the advantage
that by its form encourages learning by creating
an attractive environment. The student can freely
rotate the graph to see the desired details. Manip-
ulation of color allows, for example distinguish
quickly negative number from positive number.
The cursor allows reading values precisely. The
use of different kinds of visualization explains
thoroughly the course of the function, and is also
invaluable help for student.

Computer graphs can approach the stu-
dent to an unavailable reality, things which are
outside his environment, phenomena and pro-
cesses taking place in a great distance, things
and phenomena occurring us around. The fun-
damental principles are more easily assimilated
by students thanks visual effects and symbolic
calculations.

Fig. 5. Graphs of implicit functions

The Maxima, thanks to its capabilities and ap-
propriate selection tools, helps to solve common
problems in different fields, such us economic
analysis (e.g. compound), physics (e.g. math-
ematical pendulum), chemistry and engineering.

REFERENCES

1. Lachowicz C.T.: Matlab, Scilab, Maxima. Opis i
przykłady zastosowań, Wydawnictwo Politechniki
Opolskiej, Opole 2005.

2. Staranowicz A., Duda P., Orłowski A.: Technolo-
gie informacyjne. Wydawnictwo SGGW, Warsza-
wa 2007.

3. Portal projektu MAXIMA http://maxima.source-
forge.net/

4. Portal projektu Otwarta Nauka http://otwartanau-
ka.pl/

5. Portal matematyki obliczeniowej http://computer-
basedmath.org/

Fig. 4. Rotate the graph

